Предмет: Математика, автор: L303

В правильной четырехугольной пирамиде SABCD точка О – центр основания, S вершина, SO=8, SB=10. Найдите длину отрезка BD.
ПОмогите плиз!

Ответы

Автор ответа: nana988
9
Рассмотрим ΔBOS - прям. SO=8, BS=10. По т. Пифагора получаем ВО²=100-64=36⇒ ВО=6
BD=BO+OD. Т.к. АВСD-квадрат, то центр основания - центр квадрата - точка пересечения диагоналей. Диагонали в квадрате точкой пересечения делятся пополам ⇒ BO=OD=6 ⇒ BD=6+6=12.

L303: CGFCB<J!
L303: СПАСИБО!)
Похожие вопросы
Предмет: Математика, автор: Ksenia11064