Предмет: Математика, автор: Natashka55225

1. По стороне основания a=6 см и высоте h=7 см, найти боковое ребро правильной четырехугольной пирамиды
2. В конусе площадь осевого сечения равна 6, а высота 2, найти объём конуса

Ответы

Автор ответа: GlebGor1998
0
1. В основании правильной четырех угольной пирамиды лежит квадрат . По сторонам квадрата найдем его диагональ = Корень квадратный из 6^2 + 6^ = Корень квадратный из 72 = 6 Корней квадратных из 2 .По половине гипотенузы и высоте найдем боковое ребро пирамиды = Корень квадратный из (3*Корней квадратных из 2)^2 + 7^2 = Корень квадратный из 9 * 2 + 49 = Корень квадратный из 67 = 8,2 см
2 . Объем конуса равен V = 1/3 * пи*R^2*H  , где R- радиус основания , H - высота пирамиды .В осевом сечении конуса  - треугольник . Площадь треугольника равна  S =1/2 *d *H  , где  d- диаметр основания , H - высота конуса .  d = 2S/H  = 2 * 6 /2 = 6 см     d = 2R       R = 6 /2 = 3 см . V = 1/3 * 3.14 * 3^2 * 2 = 18,84 см^3

Похожие вопросы
Предмет: Русский язык, автор: қымбат1
Предмет: Английский язык, автор: di14994