Предмет: Геометрия,
автор: kykyшka1
HELP!!!!!!!!
Срочно, пожалуйста помогите
боковое ребро правильной четырехугольной пирамиды равно 4 см и образует с плоскостью основания пирамиды угол 45 градусов а) найдите высоту пирамиды б) найдите площадь боковой поверхности пирамиды ( С РИСУНКОМ И РЕШЕНИЕМ ПО ПУНКТАМ, БЕЗ ЛИШНИХ СЛОВ И ОБЪЯСНЕНИЙ, ПРОСТО РЕШЕНИЕ)
Ответы
Автор ответа:
1
Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники.
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД).
Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды.
По условию SA=SB=SC=SД=4, <SAO=45°
В прямоугольном ΔSAO <SOA=90°, <SAO=<ОSA=45°, значит треугольник еще и равнобедренный АО=SО=SA*cos 45=4*√2/2=2√2.
АО - половина диагонали квадрата, значит АС=ВД=2*2√2=4√2.
Сторона квадрата АВ=АС/√2=4√2/√2=4
Периметр основания Р=4АВ=4*4=16
Проведем апофему пирамиды SK - это высота боковой грани, а также медиана и высота, опущенная на сторону АВ.
SK=√(SА²-AK²)=√(4²-(АВ/2)²)=√(16-4)=2√3
Площадь боковой поверхности
Sбок=P*SK/2=16*2√3/2=16√3
Ответ: высота 2√2, площадь 16√3
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД).
Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды.
По условию SA=SB=SC=SД=4, <SAO=45°
В прямоугольном ΔSAO <SOA=90°, <SAO=<ОSA=45°, значит треугольник еще и равнобедренный АО=SО=SA*cos 45=4*√2/2=2√2.
АО - половина диагонали квадрата, значит АС=ВД=2*2√2=4√2.
Сторона квадрата АВ=АС/√2=4√2/√2=4
Периметр основания Р=4АВ=4*4=16
Проведем апофему пирамиды SK - это высота боковой грани, а также медиана и высота, опущенная на сторону АВ.
SK=√(SА²-AK²)=√(4²-(АВ/2)²)=√(16-4)=2√3
Площадь боковой поверхности
Sбок=P*SK/2=16*2√3/2=16√3
Ответ: высота 2√2, площадь 16√3
Похожие вопросы
Предмет: Английский язык,
автор: kabanova1
Предмет: Английский язык,
автор: FoxNiks
Предмет: Українська мова,
автор: zvarichevgenija
Предмет: Литература,
автор: Kirillpro4455
Благодарю вас)