Предмет: Геометрия,
автор: CJIOHiK69
Биссектриса угла прямоугольника делит его диагональ в отношении 2:7. Найдите площадь прямоугольника, если его периметр равен 108 см.
Помогите))
Ответы
Автор ответа:
25
Прямоугольник АВСД: АВ=СД, ВС=АД
Периметр Равсд=108
2(АВ+ВС)=108
АВ+ВС=54
АВ=54-ВС
Биссектриса ВК пересекает диагональ АС в точке К и делит ее в отношении АК/КС=2/7.
Исходя из свойства биссектрисы (она делит третью сторону на отрезки, пропорциональные двум другим сторонам), АВ/ВС=АК/КС.
Подставляем:
(54-ВС)/ВС=2/7
7(54-ВС)=2ВС
ВС=378/9=42
АВ=54-42=12
Площадь Sавсд=АВ*ВС=12*42=504
Периметр Равсд=108
2(АВ+ВС)=108
АВ+ВС=54
АВ=54-ВС
Биссектриса ВК пересекает диагональ АС в точке К и делит ее в отношении АК/КС=2/7.
Исходя из свойства биссектрисы (она делит третью сторону на отрезки, пропорциональные двум другим сторонам), АВ/ВС=АК/КС.
Подставляем:
(54-ВС)/ВС=2/7
7(54-ВС)=2ВС
ВС=378/9=42
АВ=54-42=12
Площадь Sавсд=АВ*ВС=12*42=504
Похожие вопросы
Предмет: Английский язык,
автор: eminzeynalov2
Предмет: Русский язык,
автор: виталина51
Предмет: Қазақ тiлi,
автор: ASKHAT08
Предмет: Немецкий язык,
автор: syperbogdan77777
Предмет: Химия,
автор: houzer17