Предмет: Математика,
автор: mod4321
найдите все решения уравнения 6sin^2x-5cosx-5=0 принадлежащие отрезку 0;2\pi
Ответы
Автор ответа:
0
6-6cos²x-5cosx-5=0
6cos²x+5cosx-1=0
cosx=a
6a²+5a-1=0
D=25+24=49
a1=(-5-7)/12=-1⇒cosx=-1⇒x=π+2πn
0≤π+2πn≤π/2
-π≤2πn≤-π/2
-1≤2n≤-1/2
-1/2≤n≤-1/4
нет решения
a2=(-5+7)/12=1/6⇒cosx=1/6⇒x=+-arccos1/6+2πn
n=0 x=-arccos1/6∉[0;π/2] U x=arccos1/6∈[0;π/2]
6cos²x+5cosx-1=0
cosx=a
6a²+5a-1=0
D=25+24=49
a1=(-5-7)/12=-1⇒cosx=-1⇒x=π+2πn
0≤π+2πn≤π/2
-π≤2πn≤-π/2
-1≤2n≤-1/2
-1/2≤n≤-1/4
нет решения
a2=(-5+7)/12=1/6⇒cosx=1/6⇒x=+-arccos1/6+2πn
n=0 x=-arccos1/6∉[0;π/2] U x=arccos1/6∈[0;π/2]
Автор ответа:
1
введем замену: cosx=t /t/≤1
D=25+24=49
t1=1/6
t2= - 1
cosx=-1 или cosx=1/6
x= или x= +/- arccos 1/6+2πk
k=0 x= arccos1/6
Похожие вопросы
Предмет: Русский язык,
автор: MArioCrut
Предмет: Русский язык,
автор: Родион071
Предмет: Английский язык,
автор: Юля66381
Предмет: Геометрия,
автор: Dasahf