Предмет: Геометрия, автор: SilentscreamSs

В прямоугольном треугольнике катеты относятся как 8:15. Найдите площадь этого треугольника, если площадь круга описанного около него равна 289π см²

Ответы

Автор ответа: mukus13
1
 \pi R^2=289 \pi
R^2=289
R=17
так как около треугольника описана окружность, то центр окружности лежит на середине гипотенузы
 BC=2*R=34
пусть AB=8x
AC= 15x
по теореме Пифагора 
64 x^{2} +225 x^{2} =1156
289 x^{2} =1156
 x^{2} =4
x=2 
AB=2*8=16
AC=2*15=30
S=1/2ab=1/2*16*30=240(см²)
Похожие вопросы
Предмет: Қазақ тiлi, автор: жиынтық