Предмет: Геометрия,
автор: Voloshukviktor
диагонали равнобокой трапеции являются биссектрисами острых углов и в точке пересечения делятся в отношение 13:5, считая от вершин острых углов. Вычислите периметр трапеции, если ее высота равно 32 см.
Ответы
Автор ответа:
2
http://znanija.com/task/12539462
Пусть AD | | BC ;AB=CD ; A и D острые углы трапеции.
<BAC=<CAD ; O_точка пересечения диагоналей AC и BD ; AO/OC=13/5.
Для удобства обозначаем AD=a ; BC =b ; BE⊥AD, E ∈ [AD] ,BE=32 см .
<BAC=<CAD , но <CAD =< ACB (как накрест лежащие углы ) ⇒AB =BC =b;
AE =(a-b)/2 =(13b/5 -b)/2 = 4b/5. ( ΔAOD подобен ΔCOB, AD/CB=AO/CO=13/5).
Из ΔAEB : по теореме Пифагора √(AB² -AE)² = BE ;
√(b² -(4b/5)²) =32 см ;
3b/5 =32 ⇔b/5 =32/3 .
Периметр трапеции : P= AD +2AB +BC=13b/5+3b =28b/5 =28*32/3 =896/3 см.
ответ: 298 2/3 (298+ 2/3 ) см .
Пусть AD | | BC ;AB=CD ; A и D острые углы трапеции.
<BAC=<CAD ; O_точка пересечения диагоналей AC и BD ; AO/OC=13/5.
Для удобства обозначаем AD=a ; BC =b ; BE⊥AD, E ∈ [AD] ,BE=32 см .
<BAC=<CAD , но <CAD =< ACB (как накрест лежащие углы ) ⇒AB =BC =b;
AE =(a-b)/2 =(13b/5 -b)/2 = 4b/5. ( ΔAOD подобен ΔCOB, AD/CB=AO/CO=13/5).
Из ΔAEB : по теореме Пифагора √(AB² -AE)² = BE ;
√(b² -(4b/5)²) =32 см ;
3b/5 =32 ⇔b/5 =32/3 .
Периметр трапеции : P= AD +2AB +BC=13b/5+3b =28b/5 =28*32/3 =896/3 см.
ответ: 298 2/3 (298+ 2/3 ) см .
Похожие вопросы
Предмет: Қазақ тiлi,
автор: hatechanoy23l1
Предмет: Английский язык,
автор: Криссс112
Предмет: Английский язык,
автор: Карина50001
Предмет: Алгебра,
автор: lili7776
Предмет: Английский язык,
автор: hsjjugebjoxhns