Предмет: Геометрия,
автор: pupaizupa
Доказать что: в равнобедренном треугольнике две медианы равны, две биссектрисы равны. Пожалуйста!!!!
Ответы
Автор ответа:
3
1) ∠BAK = ∠KAC = ∠OCA = ∠OCK, т.к. ∠A = ∠C, и СО и КА — биссектриссы.
В ΔAKB и ΔСОВ: АВ = ВС (т.к. ΔАВС — равнобедренный) ∠BAK = ∠BCO (т.к. АК и СО — биссектриссы равных углов). ∠B — общий. Таким образом, ΔAKB = ΔСОВ по 2-му признаку равенства треугольников.
Автор ответа:
5
Проведем медианы из углов при основании..Поскольку боковые стороны у равнобедренного треугольника равны, то медианы разделят их на равные части. Рассмотрим два образовавшихся треугольника, состоящих из медианы и основания. Они равны (по двум сторонам и углу между ними) следовательно третьи стороны (медианы) также равны
В равнобедренном треугольнике проведем высоту к основанию. Образуется два равных прямых треугольника.
Проведенные из углов при основании равнобедренного треугольника биссектрисы будут являться биссектрисами и прямоугольных треугольников, так как они равны, то равны и биссектрисы.
В равнобедренном треугольнике проведем высоту к основанию. Образуется два равных прямых треугольника.
Проведенные из углов при основании равнобедренного треугольника биссектрисы будут являться биссектрисами и прямоугольных треугольников, так как они равны, то равны и биссектрисы.
Похожие вопросы
Предмет: Русский язык,
автор: antongang
Предмет: Окружающий мир,
автор: сабина429
Предмет: Русский язык,
автор: alexeyfedorov2
Предмет: Математика,
автор: joff90
Предмет: Алгебра,
автор: ksushak82