Предмет: Математика, автор: hYPERMOZG

Помогите найти частное решение дифференциального уравнения x^2dy-ydx=0 y(1)=2

Ответы

Автор ответа: NNNLLL54
1
x^2dy-ydx=0\\\\x^2dy=ydx\\\\\frac{dy}{y}=\frac{dx}{x^2}\\\\ln|y|=-\frac{1}{x}+C\\\\y(1)=2\; \; \to \; \; ln2=-1+C\; ,\; \; C=1+ln2\\\\ln|y|=-\frac{1}{x}+1+ln2\\\\ili:\; |y|=e^{-\frac{1}{x}+1+ln2}
Похожие вопросы
Предмет: Алгебра, автор: annapostolnikova2006
Предмет: Математика, автор: 0298354r