Предмет: Математика,
автор: ksyunya97
Найдите наибольшее и наименьшее значение функции на [-2; 2] если y=3x^2-6x+3
Ответы
Автор ответа:
0
y=3x²-6x+3, x∈[-2;2]
Чтобы найти наибольшее и наименьшее значение функции на отрезке, нужно найти её значения на концах отрезка, а также её значения в критических точках, принадлежащих отрезку.
1) y(-2)=3*(-2)²-6*(-2)+3=3*4+12+3=12+15=27.
2) y(2)=3*2²-6*2+3=3*4-12+3=12-9=3.
3) Найдём критические точки, то есть значения x, при которых производная функции обращается в ноль: y'(x)=6x-6, y'(x)=0, 6x-6=0, ⇒ x=1, y(1)=3*1²-6*1+3=3-6+3=0.
Получим наибольшее значение функции на данном отрезке равно 27, наименьшее 0.
Чтобы найти наибольшее и наименьшее значение функции на отрезке, нужно найти её значения на концах отрезка, а также её значения в критических точках, принадлежащих отрезку.
1) y(-2)=3*(-2)²-6*(-2)+3=3*4+12+3=12+15=27.
2) y(2)=3*2²-6*2+3=3*4-12+3=12-9=3.
3) Найдём критические точки, то есть значения x, при которых производная функции обращается в ноль: y'(x)=6x-6, y'(x)=0, 6x-6=0, ⇒ x=1, y(1)=3*1²-6*1+3=3-6+3=0.
Получим наибольшее значение функции на данном отрезке равно 27, наименьшее 0.
Похожие вопросы
Предмет: Английский язык,
автор: 222837484994
Предмет: Английский язык,
автор: Timmy50
Предмет: Русский язык,
автор: mariasadikova
Предмет: Русский язык,
автор: mkeputov
Предмет: Математика,
автор: kirivakulenko30