Предмет: Математика,
автор: malischka2015
Устное объяснение решение, составить уравнение касательной к кривой y=f(x) в точке с абциссой x нулевой, если f(x)=e^x^2-5x? x нулевой=5.
Ответы
Автор ответа:
0
Касательная это прямая. Уравнение прямой это y=kx+c. Коэффициент k равен производной от функции в данной точке, к чьему графику строится касательная. Значит надо брать производную от e^(x^2-5x). Берём производную от сложной функции.
e^(x^2-5x)'=e'^(x^2-5x)*(x^2-5x)'=e^(x^2-5x)*(2x-5). В точке x0=5 значение производной равно: e^(5^2-5*5)*(2*5-5)=(e^0)*5=5
Значит уравнение касательной будет следующим: у=5x+c. Чтобы найти c, надо узнать значение самой функции в точке x0=5. Считаем:
e^(5^2-5*5)=e^0=1
И подставляем в уравнение: 1=5*x0+с; 1=5*5+с; с=1-25; с=-24.
Окончательно получаем уравнение нашей касательной y=5x-24
Вроде так как-то.
e^(x^2-5x)'=e'^(x^2-5x)*(x^2-5x)'=e^(x^2-5x)*(2x-5). В точке x0=5 значение производной равно: e^(5^2-5*5)*(2*5-5)=(e^0)*5=5
Значит уравнение касательной будет следующим: у=5x+c. Чтобы найти c, надо узнать значение самой функции в точке x0=5. Считаем:
e^(5^2-5*5)=e^0=1
И подставляем в уравнение: 1=5*x0+с; 1=5*5+с; с=1-25; с=-24.
Окончательно получаем уравнение нашей касательной y=5x-24
Вроде так как-то.
malischka2015:
Спасибо большое)
Похожие вопросы
Предмет: Английский язык,
автор: rgepgjeg
Предмет: Русский язык,
автор: Fryogr
Предмет: Русский язык,
автор: imanovagulnar58
Предмет: Математика,
автор: angelina3831
Предмет: Английский язык,
автор: VikaLovess