Предмет: Геометрия,
автор: grousemet1423
в треугольнике авс биссектриса ве и медиана ад перпендикулярны и имеют одинаковую длину, равную 104. Найдите стороны треугольника АВС
Ответы
Автор ответа:
5
<ABE = <CBE ; BD =CD ; AD⊥ BE ; AD =BE =104.
--------------------------------------------------------------------
BC =a ==>? , AC =b ==>? , AB =c ==>?
Точка пересечения AD и BE обозначаем через O .
Биссектриса BO одновременно и высота , значит ΔABD равнобедренный (BD =AB) :
BD =BC/2 =AB⇒BC=2AB⇔ a =2c.
CE/EA =BC/AB = 2;
EA =x ; CE=2x ; AC =b=3x .
Можно использовать формулы для вычисления медиан и биссектрис :
a² + ( 2AD)²=2(c² +b²) (1) ;
BE² =AB*BC - AE*EC (2) .
(2*104)² =2(c² +(3x)²) -(2c)² * * * * * a =2c * * * * *
104² = c*2c - x*2x . * * * * * c² =x² +5408 = x² +26²*8 * * * * *
-----------------------------
(2*104)² =18x² -2c² ;
104² = -2x² +2c² . * * * * * суммируем * * * * *
(4x)² =(2*104)² +104² ;
4x =104√5;
x =26√5 .
AC =3x =3*26√5 =78√5 .
c² =(26√5)² +26²*8 ;
c =26√13.
a =2c =52√13.
ответ: BC =52√13 ; AC =78√5 ; AB =26√5 .
--------------------------------------------------------------------
BC =a ==>? , AC =b ==>? , AB =c ==>?
Точка пересечения AD и BE обозначаем через O .
Биссектриса BO одновременно и высота , значит ΔABD равнобедренный (BD =AB) :
BD =BC/2 =AB⇒BC=2AB⇔ a =2c.
CE/EA =BC/AB = 2;
EA =x ; CE=2x ; AC =b=3x .
Можно использовать формулы для вычисления медиан и биссектрис :
a² + ( 2AD)²=2(c² +b²) (1) ;
BE² =AB*BC - AE*EC (2) .
(2*104)² =2(c² +(3x)²) -(2c)² * * * * * a =2c * * * * *
104² = c*2c - x*2x . * * * * * c² =x² +5408 = x² +26²*8 * * * * *
-----------------------------
(2*104)² =18x² -2c² ;
104² = -2x² +2c² . * * * * * суммируем * * * * *
(4x)² =(2*104)² +104² ;
4x =104√5;
x =26√5 .
AC =3x =3*26√5 =78√5 .
c² =(26√5)² +26²*8 ;
c =26√13.
a =2c =52√13.
ответ: BC =52√13 ; AC =78√5 ; AB =26√5 .
Похожие вопросы
Предмет: Қазақ тiлi,
автор: Пелемешек1
Предмет: Английский язык,
автор: Aleksye3455
Предмет: Английский язык,
автор: Ustim163
Предмет: Математика,
автор: QAIYJ
Предмет: Математика,
автор: Alovl