Предмет: Биология, автор: MAgiC1907

Составьте по 2-3 цепи питания к каждой среде, используя следующие организмы.

Болото-болотная черепаха, серая цапля, лягушка, комар, стрекоза, личинка стрекозы, личинка комара, уж, осока, водоросли.

Пустыня-серый варан, кобра, песчаная ящурка, навозник, саксауловый воробей, тушканчик, паук, бабочка, верблюжья колючка, саксаул, песчаная осока,

Ответы

Автор ответа: wwwnacka15
4
Болото-комар-лягушка-серая цапля,болото-стрекоза-лягушка-уж;
Пустыня-паук-ящерка-серый варан,пустыня-песчаная осока-серый варан.

MAgiC1907: надо с растениями
wwwnacka15: надо было подробно писать
Похожие вопросы
Предмет: Алгебра, автор: mathgenius
Нужно найти предел суммы ряда. Первое что приходит в голову вынести : nx/4n^2*x^2=1/4nx за знак суммы , тогда внутри суммы k=0 до k=n остается выражение:
1/(1/x^2 +(k/2n)^2) , нет смысла стараться (у вас явно ничего не получится) найти сумму такого ряда.Теперь есть вопрос, можно ли рассуждать следующим образом или все вышесказанное является несправедливым? Возьмем какой нибудь бесконечно большой номер k=m после которого будет считать , что k=m соизмеримо по размеру с n (k=n-i ,где i-конечное целое число) , в этом случае предел :
lim k/n =lim(n-i)/n=1 I-конечное целое число . Равен 1 , а для всех остальных k для которых i -бесконечно большое этот предел будет равен 0. Таким образом сумма этого ряда при cтремлении n к бесконечности будет равна: (n-m+1)*(1/(1/x^2 +(1/2)^2) +(m-1)*(1/x^2) = x^2*( m-1 +4*(n-m+1)/(4+x^2) ). Теперь учтем вынесенный за скобки множитель : 1/4*n*x * x^2*( m-1 +4*(n-m+1)/(4+x^2) ) учитываем что при стремлении n к бесконечности : (m-1)/n=1 ; (n-m+1)/n=(1-1)/1=0
Тогда искомый предел равен: x^2/4x= x/4 . Вывод: предел равен x/4. Если я не прав и этот способ не является ,,честным'' пожалуйста решите так как нужно. Потому что других идей я тут придумать не смог. Может есть какая-то теорема о которой я не слышал , что сможет решить эту задачу.