Предмет: Геометрия,
автор: Аноним
В прямоугольном треугольнике с вершины прямоrо угла проведения высоту, биссектрису и медиану. Найдите острые углы треугольника, если:кут межу высотой и медианой=10градусов
Ответы
Автор ответа:
1
Пусть большой ∆ - это АВС, медиана - это отрезок АМ, высота - отрезок АV, биссектриса при моём решении не потребуется. По определению высоты в ∆ АVМ угол AVM равен 90°, при этом мы знаем, что угол между высотой и биссектрисой (это угол МAV) равен 10°. Тогда получаем, что угол АМV равен 90°-10°=80° (по теореме о сумме углов ∆). Значит, угол ВМА равен 100° как смежный с углом АМV. Из того, что в прямоугольном ∆ медиана, проведённая к гипотенузе, равна половине гипотенузы, делаем вывод, что ∆ ВМА равнобедренный (по определению). Соответственно, угол МВА равен углу МАВ и равен (180°-100°):2= 40°. Угол МВА - это угол АВС в большом прямоугольном ∆. Тогда угол ВАС равен 90°- 40°=60°.
Ответ: углы ∆ равны 40° и 60°.
Похожие вопросы
Предмет: Українська мова,
автор: gbdabf
Предмет: Қазақ тiлi,
автор: Сали51
Предмет: Беларуская мова,
автор: mustafaevnurlan1
Предмет: Математика,
автор: kruzzerplay
Предмет: Английский язык,
автор: fc6tcutxuitcuo