Предмет: Математика,
автор: kseniarous
Сколькими нулями оканчивается число 2015! (факториал)?
Ответы
Автор ответа:
18
Ноль появляется каждый раз, когда встречается пара 2*5, то есть когда умножается чётное число на число кратное 5.Среди натуральных чисел от 1 до 2015 чётных чисел намного больше, чем кратных 5, так что достаточно сосчитать пятёрки, а уж на каждую пятёрку найдётся своя двойка.
1) 2015 = 5·403. То есть 403 числа делятся на 5.
2) Числа, кратные 25 (25, 50, 75, 100 и т.д.), дадут нам по две пятёрки (25=5*5). Таких чисел 80, потому что 2015 = 25·80+15. То есть общее количество пятёрок увеличится на 80.
3) Числа, кратные 125 (125, 250, 375, 500 и т.д.), дадут нам по три пятёрки (125=5*5*5). Таких чисел 16, потому что 2015 = 125·16+15. Не забудем добавить ещё 16 пятёрок.
4) Числа, кратные 625 (625, 1250 и 1875), дадут нам по 4 пятёрки (625=5*5*5*5). Таких чисел только 3 (четвёртое уже больше, чем 2015), поэтому добавим ещё 3 пятёрки.
Всего имеем: 403+80+16+3 = 502 пятёрки, и это значит, что факториал 2015! оканчивается 502 нулями.
Ответ: 502 нулями.
1) 2015 = 5·403. То есть 403 числа делятся на 5.
2) Числа, кратные 25 (25, 50, 75, 100 и т.д.), дадут нам по две пятёрки (25=5*5). Таких чисел 80, потому что 2015 = 25·80+15. То есть общее количество пятёрок увеличится на 80.
3) Числа, кратные 125 (125, 250, 375, 500 и т.д.), дадут нам по три пятёрки (125=5*5*5). Таких чисел 16, потому что 2015 = 125·16+15. Не забудем добавить ещё 16 пятёрок.
4) Числа, кратные 625 (625, 1250 и 1875), дадут нам по 4 пятёрки (625=5*5*5*5). Таких чисел только 3 (четвёртое уже больше, чем 2015), поэтому добавим ещё 3 пятёрки.
Всего имеем: 403+80+16+3 = 502 пятёрки, и это значит, что факториал 2015! оканчивается 502 нулями.
Ответ: 502 нулями.
Похожие вопросы
Предмет: Английский язык,
автор: TheNikaFox123
Предмет: Русский язык,
автор: Аноним
Предмет: Русский язык,
автор: saulya
Предмет: Окружающий мир,
автор: bxbzbzbbz
Предмет: Алгебра,
автор: Darkkat