Предмет: Геометрия, автор: Sergei1232

В равнобедренной трапеции меньшее основание равно 8,а высота равна корню из трех. Найдите площадь трапециии если один из ее углов равен 150 градусам. помогите от вас зависит четвертная оценка

 

 

Ответы

Автор ответа: Nikixit
0

площадь трапеции рана  половине суммы оснований умноженной на высоту.

Т. к один из углов равен 150 градусам ( а это обязательно угол при меньшем основании) то угол при большем основании будет равен 30 градусам ( сумма углов четырёх. рана 360 ) а зная свойство прямоугольного треугольника с углом 30 градусов находим боковую

сторону : 2 корня из 3

зная теорему пифагора находим оставшуюся сторону треугольника: 3

и находим большее основание: 3+3+8=14

(14 + 8) : 2 * корень из 3 = 11 корней из трёх

Похожие вопросы
Предмет: Русский язык, автор: AmeliKat8
Предмет: История, автор: marbfhji
Предмет: Геометрия, автор: 10011996

№1. Вычислить объем правильной треугольной пирамиды, если сторона основания равна 4 дм, а высота равна 3  дм; показать угол наклона бокового ребра к плоскости основания.

 

№2. Вычислить объем пирамиды, если в основании ее лежит прямоугольный треугольник с катетами 6 см и 8 см, а высота пирамиды равна 16 см.

 

№3. Найти объем прямого параллелепипеда, основанием которого является ромб с диагоналями 12 см и 16 см, а высота параллелепипеда равна 16 см.

 

№4. Вычислить: а) объем прямоугольного параллелепипеда, если его измерения 4 см, 3 см, 5 см. 

 б) диагональ этого параллелепипеда.

 

№5. Диагональ осевого сечения цилиндра равна 12 см. она наклонена к плоскости основания под углом 60°.
Вычислите объем цилиндра.

 

№6.  Длина окружности сечения шара плоскостью равна 8π см. радиус шара, проведенный в точку окружности, наклонен к плоскости сечения под углом 45°. Вычислите объем шара.

 

№7. Основание пирамиды - прямоугольник со сторонами 9м и 12м, все боковые ребра равны 12,5м. Найдите объем пирамиды.

 

№8. Длины сторон основания прямого параллелепипеда равны 10 и 5  см, а величина угла между ними равна 45º. Найдите объем параллелепипеда, если длина меньшей его диагонали равна 10см.

 

№9. Полная поверхность цилиндра 80П м², площадь его основания 25П м². Определить объем цилиндра.

 

№10.  Длина окружности сечения шара плоскостью равна 8π см. радиус шара, проведенный в точку окружности, наклонен к плоскости сечения под углом 45°. Вычислите объем шара.