Предмет: Геометрия,
автор: adorofeev2000
В окружности с центром в точке О проведены диаметр KF и хорда KP. Через точку P проведена касательная, пересекающая луч KF в точке E под углом 30 градусов. Докажите, что треугольник KPE равнобедренный.
Ответы
Автор ответа:
1
Касательная к окружности РЕ перпендикулярна к радиусу ОР, проведенному в точку касания. Значит Δ ОРЕ - прямоугольный (<ОРЕ=90°), тогда <РОЕ=180-<ОРЕ-<РЕО=180-90-30=60°.
В ΔОРК стороны ОК=ОР(радиусы), значит он равнобедренный и углы при основании равны. Т.к. <РОК=180-<РОЕ=180-60=120° (смежные углы), то значит <РКО=<ОРК=(180-120)/2=30°.
В ΔКРЕ получается, что углы при основании <РКО=<РЕО=30, значит треугольник равнобедренный
В ΔОРК стороны ОК=ОР(радиусы), значит он равнобедренный и углы при основании равны. Т.к. <РОК=180-<РОЕ=180-60=120° (смежные углы), то значит <РКО=<ОРК=(180-120)/2=30°.
В ΔКРЕ получается, что углы при основании <РКО=<РЕО=30, значит треугольник равнобедренный
Похожие вопросы
Предмет: Английский язык,
автор: petrovnasvetla
Предмет: Английский язык,
автор: 123дудочка123
Предмет: Русский язык,
автор: catpolina21
Предмет: Русский язык,
автор: MACSON55