Предмет: Геометрия,
автор: vasily001
Сторона основания правильной четырехугольной призмы равна а, диагональ призмы образует с плоскостью основания угол 45°. Найти угол между диагональю призмы и плоскостью боковой грани
Ответы
Автор ответа:
2
Диагональ призмы равна корню из сумы квадратов её измерений.
Д² = а²+а²+Н².
По заданию диагональ основания равна высоте призмы (угол 45°)
Тогда Н² = а² + а².
Тогда Д² =4а² Д = 2а.
Треугольник, составленный диагональю призмы, диагональю боковой грани и верхним ребром, имеет соответственно длины сторон:
2а, а√2 и а.
Такие параметры треугольника соответствуют прямоугольному треугольнику с искомым углом 30 градусов.
Д² = а²+а²+Н².
По заданию диагональ основания равна высоте призмы (угол 45°)
Тогда Н² = а² + а².
Тогда Д² =4а² Д = 2а.
Треугольник, составленный диагональю призмы, диагональю боковой грани и верхним ребром, имеет соответственно длины сторон:
2а, а√2 и а.
Такие параметры треугольника соответствуют прямоугольному треугольнику с искомым углом 30 градусов.
Похожие вопросы
Предмет: Русский язык,
автор: sasha1943
Предмет: Русский язык,
автор: Boy12345l
Предмет: Английский язык,
автор: Аноним
Предмет: Математика,
автор: kiculik
Предмет: Математика,
автор: karim41