Предмет: Алгебра, автор: Аноним

(2+ \sqrt{3} )^x+((2- \sqrt{3} )^x=4

Ответы

Автор ответа: nastasiya98
2
2- \sqrt{3} =  \frac{(2- \sqrt{3})(2+ \sqrt{3})  }{2+ \sqrt{3} } =\frac{1}{2+ \sqrt{3} }

(2+ \sqrt{3})^x+ \frac{1}{(2+ \sqrt{3})^x } =4
(2+ \sqrt{3} )^x=t, t>0
t+ \frac{1}{t} -4=0
t²-4t+1=0
D=2√3
t₁=2+√3
t₂=2-√3

(2+ \sqrt{3} )^x=2+ \sqrt{3}
x=1
(2+ \sqrt{3} )^x=2- \sqrt{3}
x=-1

Автор ответа: Randy228
2
2- \sqrt{3} = \frac{(2- \sqrt{3})(3+ \sqrt{3} ) )}{2+ \sqrt{3} } = \frac{1}{2+ \sqrt{3} }

(2+ \sqrt{3} ) ^{x} + \frac{1}{(2+ \sqrt{3} ) ^{x}} =4
(2+ \sqrt{3} )^x=bb \ \textgreater \  0

b^2-4b+1=0
D=2 \sqrt{3}    
D - дискриминант
b _{1} =2+ \sqrt{3}
b _{2} =2- \sqrt{3}
(2+ \sqrt{3} )^x=2+ \sqrt{3}
x=1
(2+ \sqrt{3} )^x=2- \sqrt{3}
x=-1
Похожие вопросы
Предмет: Русский язык, автор: almahanovmedet1
Предмет: Қазақ тiлi, автор: Samsung123456789