Предмет: Алгебра,
автор: tilltrent
одна из цифр двузначного числа на 3 меньше другой, а сумма квадратов этого числа и числа, полученного перестановкой его цифр, равна 1877. Найдите это
число.
MrLyanda:
если я нпишу уравнение то этого хватит? Лень решать
Ответы
Автор ответа:
7
Допустим х- первая цифра
у- вторая
число х*10+у
х=y+3 ,(хотя может быть у=х+3 так как в условии не оговорено какая из цифр т.е первая или вторая имеет большее значение )
(10x+y)^2+(10y+x)^2=1877
подставляем x во второе уравнение и приводим все к квадратному уравнению и решаем
242x²+726x-968=0 | : 242
х²+3х-4=0
x 1=1 ,то у1= 1+3=4
x 2= -4 , то У 2 = -4 +3 = -1 ,можем убедиться ,что отрицательные значения не подходят
Значит это число может принимать следующие значения 14 и 41
Похожие вопросы
Предмет: Русский язык,
автор: dima01072006
Предмет: Английский язык,
автор: котик20003
Предмет: Английский язык,
автор: АлесяAlese
Предмет: Русский язык,
автор: skdkxkds
Предмет: География,
автор: acknast31