Предмет: Алгебра,
автор: vitaly44
Помогите решить C3
Приложения:
Ответы
Автор ответа:
0
2√(1 -4^x)/(4^(x-1) - 63*√(4^x/(1-4^x) ≤ 3√63;
4√(1 - 4^x)/4^x -63*√(4^x/(1-4^x) ≤ 3√63;
ОДЗ: 1 - 4^x ≠ 0 ⇒ x≠0. [ 4^x ≠ 1; 4^x ≠ 4^0; x≠0 ].
4t -63/t ≤ 3√63
4t² -3√63 *t -63 ≤ 0; (
4(t +√63/4)(t -√63) ≤ 0;
- √63/4 ≤ t ≤√63;
- √63/4 ≤√ ((1-4^x)/4^x) ≤√63;
0 ≤√ ((1-4^x)/4^x) ≤√63;
0 ≤ (1-4^x)/4^x ≤63;
0 ≤ 1-4^x ≤63*4^x ;
1/64 ≤4^x ≤1;
4^(-3) ≤ 4^x ≤ 4^ 0;
-3 ≤x ≤ 0 , но x =0 ∉ ОДЗ , поэтому ,
-3≤x < 0.
ответ: x∈ [ -3 ;0).
4√(1 - 4^x)/4^x -63*√(4^x/(1-4^x) ≤ 3√63;
ОДЗ: 1 - 4^x ≠ 0 ⇒ x≠0. [ 4^x ≠ 1; 4^x ≠ 4^0; x≠0 ].
4t -63/t ≤ 3√63
4t² -3√63 *t -63 ≤ 0; (
4(t +√63/4)(t -√63) ≤ 0;
- √63/4 ≤ t ≤√63;
- √63/4 ≤√ ((1-4^x)/4^x) ≤√63;
0 ≤√ ((1-4^x)/4^x) ≤√63;
0 ≤ (1-4^x)/4^x ≤63;
0 ≤ 1-4^x ≤63*4^x ;
1/64 ≤4^x ≤1;
4^(-3) ≤ 4^x ≤ 4^ 0;
-3 ≤x ≤ 0 , но x =0 ∉ ОДЗ , поэтому ,
-3≤x < 0.
ответ: x∈ [ -3 ;0).
vitaly44:
2√(1 -4^x)/(4^(x-1) а как тут из 2 4√(1 - 4^x)/4^x получилось
Похожие вопросы
Предмет: Русский язык,
автор: Showtime228
Предмет: Русский язык,
автор: Аноним
Предмет: Русский язык,
автор: КрутойГанстерxD
Предмет: Геометрия,
автор: Leraaa28
Предмет: Математика,
автор: Nurperi2007