Предмет: Алгебра, автор: Таня476

Найдите число целых решений неравенства

Х в квадрате*3 в степени Х и вычесть 3 в степени Х+1 <=0

Приложения:

Ответы

Автор ответа: Maks345
0

9^x - 3^x - 6 > 0

3^2x - 3^x - 6 > 0

замена

3^x = y

ОДЗ: у > 0

y² - y - 6 > 0

найдём нули функции  f(y) = y² - y - 6

решим уравнение y² - y - 6 = 0

D = 1 + 24 = 25

√D = 5

y₁ = (1 - 5):2 = -2

y₁ = (1 + 5):2 = 3

График функции f(y) = y² - y - 6  квадратная парабола веточками вверх, поэтому неравенство y² - y - 6 > 0 имеет решение у∈(-∞; -2)U (3; +∞)

c учётом ОДЗ получаем у∈(3; +∞)

вернёмся к замене

3^x = 3

х = 1

Ответ: х∈(1; +∞)

Похожие вопросы