Предмет: Геометрия, автор: ERka312

Дано: Прямая призма, AB=8см, AB=BC, C1C=10см, найти S бок

Ответы

Автор ответа: oxxisplagter
1
) ABCDA1B1C1D1 - прямая призма, основание - ромб ABCD; ∠BAD = 60°; H = AA1 = 10
AB = BC = CD = AD = a; P = 4a = S(бок) /H = 24; a = 6
треугольники ABD и BCD - равносторонние
S(сеч) = S(BDD1B1) = BD·H = 6·10 = 60 (см²)
2) Если все боковые ребра пирамиды наклонены к плоскости основания (прямоугольный треугольник ABC, ∠B = 90) под одинаковым углом (90 - 45 = 45), то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр (точка O, лежит на середине гипотенузы) описанной около основания окружности.
AC = 2·4·tg(45) = 8
BC = AC·cos(30) = 4√3
AB = AC·sin(30) = 4
OH⊥AB; OH = BC/2 = 2√3
OK⊥BC; OK = AB/2 = 2
DH = √(OD² + OH²) = 2√7
DK = √(OD² + OK²) = 2√5
S(бок) = (1/2)(8·4 + (2√7)·4 + (2√5)·(4√3)) = 4(4 + √7 + √15) (см²) надеюсь помог

ERka312: это треугольная прямая призма AA1BB1CC1
Похожие вопросы
Предмет: Другие предметы, автор: Умнаякрасивая
Предмет: Алгебра, автор: anastasiaburliuk
Предмет: Химия, автор: Kolya484838