Предмет: Алгебра,
автор: loverbaby
Объясните пожалуйста, как решать уравнения такого типа:
1) 4 sin^2 x + 5 sin x +1 = 0
2) 3 cos^2 x + 2 cos x -5 =0
Ответы
Автор ответа:
1
1) 4 sin² x + 5 sin x + 1 = 0
sinx = t
4t² + 5t + 1 = 0
D = 25 - 4*4*1 = 9
t₁ = (-5 - 3)/8 = - 1
t₂ = (-5 + 3) /8 = - 1/4
a) sinx = - 1
x₁ = - π/2 + 2πk, k∈Z
b) sinx = - 1/4
x₂ = (-1)^(n)arcsin(-1/4) + πn, n∈Z
2) 3 cos² x + 2 cos x - 5 = 0
cosx = y
3y² + 2y - 5 = 0
D = 4 + 4*3*5 = 64
y₁ = (-2 - 8)/6 = - 5/3
y₂ = (-2 + 8)/6 = 1
cosx = - 5/3 не имеет решение, так как
не удовлетворяет условию IcosxI ≤ 1
cosx = 1
x = 2πk, k∈Z
sinx = t
4t² + 5t + 1 = 0
D = 25 - 4*4*1 = 9
t₁ = (-5 - 3)/8 = - 1
t₂ = (-5 + 3) /8 = - 1/4
a) sinx = - 1
x₁ = - π/2 + 2πk, k∈Z
b) sinx = - 1/4
x₂ = (-1)^(n)arcsin(-1/4) + πn, n∈Z
2) 3 cos² x + 2 cos x - 5 = 0
cosx = y
3y² + 2y - 5 = 0
D = 4 + 4*3*5 = 64
y₁ = (-2 - 8)/6 = - 5/3
y₂ = (-2 + 8)/6 = 1
cosx = - 5/3 не имеет решение, так как
не удовлетворяет условию IcosxI ≤ 1
cosx = 1
x = 2πk, k∈Z
loverbaby:
Спасибо огромное)
Похожие вопросы
Предмет: Русский язык,
автор: katyagame4356
Предмет: Английский язык,
автор: Sveta890
Предмет: Русский язык,
автор: доброx5
Предмет: Алгебра,
автор: LewKot
Предмет: Геометрия,
автор: tania9239