Предмет: Алгебра,
автор: ПолинУшка01
ПОМОГИТЕ ПОЖААААААААЛУЙСТА Т.Т
При каких значениях α множеством решений неравенства 3х-7< \frac{ \alpha }{3}
является числовой промежуток (-∞;4) ?
ПолинУшка01:
да это оно
Ответы
Автор ответа:
1
Для начала решим неравенство(оно, кстати, является линейным) как мы всегда это делали.
9x - 21 < a
9x < a + 21
x < (a+21)/9
Что мы здесь сделали? Мы просто решили линейное неравенство относительно x, а альфа - это параметр - неизвестное число.
теперь совсем просто ответить на вопрос задачи.
Решением нашего неравенства должно быть x < 4. Если мы немного всмотримся в решённое неравенство и в этот интервал, то мы заметим, что условие выполняется тогда, когда (a+21)/9 = 4
Действительно, если (a+21)/9 > 4, то решением исходного неравенства, очевидно, будет не только x < 4.
Если же ,наоборот, меньше, то не весь интервал x < 4 будет решением неравенства. Поэтому, возможно только равенство, решаем полученное уравнение и находим альфа:
a + 21 = 36
a = 36 - 21 = 15 - это и есть ответ
9x - 21 < a
9x < a + 21
x < (a+21)/9
Что мы здесь сделали? Мы просто решили линейное неравенство относительно x, а альфа - это параметр - неизвестное число.
теперь совсем просто ответить на вопрос задачи.
Решением нашего неравенства должно быть x < 4. Если мы немного всмотримся в решённое неравенство и в этот интервал, то мы заметим, что условие выполняется тогда, когда (a+21)/9 = 4
Действительно, если (a+21)/9 > 4, то решением исходного неравенства, очевидно, будет не только x < 4.
Если же ,наоборот, меньше, то не весь интервал x < 4 будет решением неравенства. Поэтому, возможно только равенство, решаем полученное уравнение и находим альфа:
a + 21 = 36
a = 36 - 21 = 15 - это и есть ответ
Похожие вопросы
Предмет: Русский язык,
автор: Аноним
Предмет: Русский язык,
автор: Malaya2018
Предмет: Қазақ тiлi,
автор: Аноним
Предмет: Математика,
автор: VLAD2007228