Предмет: Геометрия,
автор: Lanfen
1. КМ и КN - отрезки касательных, проведенных из точки К к окружности с центром О. Найдите КМ и КN, если ОК = 12 см, Угол МОN = 120градусов.
2. Диагонали ромба АВСД пересекаются в точке О. Докажите, сто прямая ВД касается окружности с центром А и радиусом, равным ОС.
Ответы
Автор ответа:
2
1)треугольники OMK и OKN прямоугольные, при чём они равны по катету (МО=ON=R) и гипотенузе ОК- общая.
=>MK=KN, угол КОМ=KON=120/2=60
sin60=OK/KN=OK/MK
KN=MK=(12*sqrt{3})/2=6sqrt{3}
2)диагонали ромба точкой пересечения делятся пополам, диагонали ромба пересекаются под прямым углом
АО перпендикулярна BD
АО=ОС=R
расстояние от центра окружности А до прямой BD равняется радиусу =>BD - касательная
=>MK=KN, угол КОМ=KON=120/2=60
sin60=OK/KN=OK/MK
KN=MK=(12*sqrt{3})/2=6sqrt{3}
2)диагонали ромба точкой пересечения делятся пополам, диагонали ромба пересекаются под прямым углом
АО перпендикулярна BD
АО=ОС=R
расстояние от центра окружности А до прямой BD равняется радиусу =>BD - касательная
Похожие вопросы
Предмет: Английский язык,
автор: geo7
Предмет: Українська мова,
автор: Гера1110875
Предмет: Английский язык,
автор: missaki999
Предмет: Русский язык,
автор: justmen187
Предмет: История,
автор: Leilanator124