Предмет: Алгебра,
автор: Grelax131
Написать уровнение касательной к графику функции f(x)=x^3+3x в точке с абциссой X0=3.
Ответы
Автор ответа:
0
уравнение касательной y(кас)= f'(x₀)(x-x₀)+f(x₀)
f'(x)=3x²+3
f'(x₀)=f'(3)=3*3²+3=30
f(x₀)=f(3)=3³+3*3=36
y (кас)=30(x-3)+36
y(кас)=30x-90+36
y(кас)=30x-54
f'(x)=3x²+3
f'(x₀)=f'(3)=3*3²+3=30
f(x₀)=f(3)=3³+3*3=36
y (кас)=30(x-3)+36
y(кас)=30x-90+36
y(кас)=30x-54
Похожие вопросы
Предмет: Русский язык,
автор: stuka4
Предмет: Английский язык,
автор: Аноним
Предмет: Окружающий мир,
автор: PoulyCat
Предмет: Физика,
автор: step65
Предмет: Математика,
автор: viktorry5833