Предмет: Геометрия,
автор: viktoriyaorlov2
Радиус окружности, вписанной в основание правильной треугольной пирамиды, равен 12, а длина бокового ребра пирамиды равна 26. Найдите высоту пирамиды. ответ 10
Ответы
Автор ответа:
10
Пирамида правильная, значит в основании правильный треугольник, в который вписали окружность. работаем в этом треугольнике: Проведём в нём две высоты к разным сторонам, они точкой пересечения будут делиться в отношении 2:1 считая от вершины. Так вот эта одна часть нам и дана в качестве радиуса,т.е. она равна 12., следовательно, вторая часть в два раза больше и равна 24.
Теперь переходим в пирамиду проведём высоту, она упадёт в центр окружности( ту самую точку пересечения высот нашего основания). и образует прямоугольный треугольник, гипотенуза которого нам дана, как боковое ребро=26 . А второй катет мы нашли, он равен 24
по теореме пифагора
х-высота
х^2+24^2=26^2
х^2= 676-576
х^2=100
х=10
Теперь переходим в пирамиду проведём высоту, она упадёт в центр окружности( ту самую точку пересечения высот нашего основания). и образует прямоугольный треугольник, гипотенуза которого нам дана, как боковое ребро=26 . А второй катет мы нашли, он равен 24
по теореме пифагора
х-высота
х^2+24^2=26^2
х^2= 676-576
х^2=100
х=10
Похожие вопросы
Предмет: Русский язык,
автор: Tellimirzeyevatelli
Предмет: Русский язык,
автор: iraermolchik
Предмет: Английский язык,
автор: faika1
Предмет: Математика,
автор: viKtOriA2002Vik
Предмет: Қазақ тiлi,
автор: Egasila