Предмет: Геометрия,
автор: veruntcha
Диагонали ромба равны 16 см и 12 см. Найти синус тупого угла ромба.
Ответы
Автор ответа:
13
Пусть АВСМ - ромб, АС = 10 и ВМ = 16 - диагонали,
О - точка пересечения диагоналей.
Тогда АО = СО = 1/2 АС = 5,
ВО = МО = 1/2 ВМ = 8,
прямоугольный треугольник АОВ имеет гипотенузу
АВ = корень(5^2 + 8^2) = корень(89).
И так, сторона ромба корень(89).
По теореме косинусов находим косинус угла
противолежащего основанию в равнобедренном
треугольнике:
АВС
АС^2 = AB^2 + BC^2 - 2AB*BC*cos(ABC)
cos(ABC) = (AB^2 + BC^2 - АС^2) / 2AB*BC
cos(ABC) = (89 + 89 - 100) / (2*89)
cos(ABC) = 39/89.
Аналогично для треугольника АВМ
cos(BAM) = (89 + 89 - 256) / (2*89)
cos(BAM) = -39/89.
Ответ: arccos(39/89), arccos(-39/89)
О - точка пересечения диагоналей.
Тогда АО = СО = 1/2 АС = 5,
ВО = МО = 1/2 ВМ = 8,
прямоугольный треугольник АОВ имеет гипотенузу
АВ = корень(5^2 + 8^2) = корень(89).
И так, сторона ромба корень(89).
По теореме косинусов находим косинус угла
противолежащего основанию в равнобедренном
треугольнике:
АВС
АС^2 = AB^2 + BC^2 - 2AB*BC*cos(ABC)
cos(ABC) = (AB^2 + BC^2 - АС^2) / 2AB*BC
cos(ABC) = (89 + 89 - 100) / (2*89)
cos(ABC) = 39/89.
Аналогично для треугольника АВМ
cos(BAM) = (89 + 89 - 256) / (2*89)
cos(BAM) = -39/89.
Ответ: arccos(39/89), arccos(-39/89)
veruntcha:
Это неверное решение задачи. Спасибо, я её уже решила!
Это неверное решение!!
какое же верное?
Задача решается по формуле синуса двойного угла. sin2a=2sin a[cos a. Следовательно сначала находим синус угла ВАС=8/10=0,8, а затем косинус этого же угла=6/10=0,6, следовательно sin BCD=2х0,8х0,6=0,96
Похожие вопросы
Предмет: Окружающий мир,
автор: Кирягеймер
Предмет: Русский язык,
автор: margaryanelenc
Предмет: Английский язык,
автор: 18828yva
Предмет: Другие предметы,
автор: pantera0538
Предмет: География,
автор: girl268