Предмет: Геометрия,
автор: aylar19
Найдите длину отрезка касательной KM, проведенной к окружности с радиусом равным 1,5 см, если М точка касания и расстояние от центра окружности до точки К равно 2 см.
Ответы
Автор ответа:
2
Касательная КМ в точке касания образует с радиусом окружности угол = 90 град , т. е. угол КМО=90 ( О --центр окружности ). По теореме Пифагора из ΔКОМ найдём КМ :
КО²=КМ²+ОМ²
КМ²=КО²-ОМ²
КМ²=2²-(1,5)²=4-2,25=1,75 КМ=√1,75=1.32
Ответ : 1,32
КО²=КМ²+ОМ²
КМ²=КО²-ОМ²
КМ²=2²-(1,5)²=4-2,25=1,75 КМ=√1,75=1.32
Ответ : 1,32
Автор ответа:
0
Вариант решения.
Если из точки вне окружности к ней проведены касательная и секущая, то квадрат длины отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть.
Сделаем рисунок.
Точку пересечения КО с окружностью обозначим С.
Продолжим КО до пересечения с окружностью в точке Е.
КЕ - секущая, МК - отрезок касательной.
КС - внешняя часть секущей.
КМ²=КС·КЕ
КЕ=2+r=3,5
КС=2-r=0,5
КМ²=3,5·0,5=1,75
КМ=√1,75=0,5√7 см
Если из точки вне окружности к ней проведены касательная и секущая, то квадрат длины отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть.
Сделаем рисунок.
Точку пересечения КО с окружностью обозначим С.
Продолжим КО до пересечения с окружностью в точке Е.
КЕ - секущая, МК - отрезок касательной.
КС - внешняя часть секущей.
КМ²=КС·КЕ
КЕ=2+r=3,5
КС=2-r=0,5
КМ²=3,5·0,5=1,75
КМ=√1,75=0,5√7 см
Приложения:
Похожие вопросы
Предмет: Русский язык,
автор: BomBist1
Предмет: Другие предметы,
автор: SonyashkaNyashka
Предмет: Русский язык,
автор: ИльЯQ
Предмет: Математика,
автор: alina022954
Предмет: Английский язык,
автор: liti36