Предмет: Геометрия,
автор: Аноним
В прямоугольном треугольнике катет, прилежащий к углу 30, равен 48см. Найдите длину биссектрисы другого острого угла.
Ответы
Автор ответа:
5
1) Рисуем треугольник АВС ( C - прямой, А = 30 градусов, АС = 48 см)
тогда катет, лежащий против угла 30 градусов равен половине гипотенузы,
т.е. ВС = 1/2 АВ.
Примем ВС=х, тогда АВ = 2х,
тогда по теореме Пифагора АВ² = АС² + ВС²
(2х)² = 48² + х ²
4х² = 48² + х ²
3х² = 48²
х² = 48²/3
х = 48/√3 = 16*3/√3 =16√3
Итак ВС = 16√3.
2) Угол В = 90 - 30 = 60. Пусть ВМ = биссектриса угла В.
Она делит угол на два угла по 30 градусов.
Рассмотрим треугольник ВМС - он прямоугольный и
угол МВС = 30 градусов, значит МС = 1/2 ВМ.
Пусть МС = y, тогда ВМ = 2y,
тогда по теореме Пифагора ВМ² = МС² + ВС²
( 2y) ² = y² + (16√3)²
3y² = 16² * 3
y² = 16²
y = 16
=> ВМ = 2y = ВМ = 2*16=32
Ответ : 32.
тогда катет, лежащий против угла 30 градусов равен половине гипотенузы,
т.е. ВС = 1/2 АВ.
Примем ВС=х, тогда АВ = 2х,
тогда по теореме Пифагора АВ² = АС² + ВС²
(2х)² = 48² + х ²
4х² = 48² + х ²
3х² = 48²
х² = 48²/3
х = 48/√3 = 16*3/√3 =16√3
Итак ВС = 16√3.
2) Угол В = 90 - 30 = 60. Пусть ВМ = биссектриса угла В.
Она делит угол на два угла по 30 градусов.
Рассмотрим треугольник ВМС - он прямоугольный и
угол МВС = 30 градусов, значит МС = 1/2 ВМ.
Пусть МС = y, тогда ВМ = 2y,
тогда по теореме Пифагора ВМ² = МС² + ВС²
( 2y) ² = y² + (16√3)²
3y² = 16² * 3
y² = 16²
y = 16
=> ВМ = 2y = ВМ = 2*16=32
Ответ : 32.
Похожие вопросы
Предмет: Информатика,
автор: vadim0вен
Предмет: Биология,
автор: musav46
Предмет: Геометрия,
автор: денис09
Предмет: Химия,
автор: kotenyaanonimnaya
Предмет: Алгебра,
автор: Аноним