Предмет: Алгебра,
автор: KatherineKing
Биссектриса АМ и медиана ВК прямоугольного треугольника АВС (угол В = 90) пересекаются в точке О, АВ=8, ВС=6. Найдите отношение ВО : ОК
Ответы
Автор ответа:
14
Гипотенуза АС ΔАВС равна АС = √(АВ² + ВС²) = √(8² + 6²) = 10
Медиана ВК, проведённая из прямого угла В прямоугольного Δ АВС, делит ΔАВС на два равнобедренных треугольника: ΔАВК (АК = ВК) и ΔСВК (ВК = СК).
Таким образом, АК = СК = 10 :2 = 5
Биссектриса АО ΔАВК делит противолежащую сторону ВК на отрезки ВО и ОК, пропорциональные прилежащим сторонам АВ и АК.
Таким образом, ВО : ОК = АВ : АК или ВО : ОК = 8 : 5
Медиана ВК, проведённая из прямого угла В прямоугольного Δ АВС, делит ΔАВС на два равнобедренных треугольника: ΔАВК (АК = ВК) и ΔСВК (ВК = СК).
Таким образом, АК = СК = 10 :2 = 5
Биссектриса АО ΔАВК делит противолежащую сторону ВК на отрезки ВО и ОК, пропорциональные прилежащим сторонам АВ и АК.
Таким образом, ВО : ОК = АВ : АК или ВО : ОК = 8 : 5
Похожие вопросы
Предмет: География,
автор: VladMarbum
Предмет: Биология,
автор: novakiraa
Предмет: Информатика,
автор: azaliy09
Предмет: Математика,
автор: Vivacow
Предмет: Информатика,
автор: kamillakild2006