Предмет: Алгебра, автор: LuCaRDiSS

Найти длину и уравнение медианы BM и высоты CH; в триугольнике ABC,где А(5;-6) В(-3;4) С(0;10)

Ответы

Автор ответа: Аноним
0

1)Найдём длину и уравнение медианы BM. Поскольку BM - медиана, то M - середина стороны AC. Воспользуемся формулой для вычисления координат середины отрезка, поскольк мы знаем координаты его концов(отрезок AC):

x = (x1  + x2) / 2 = 5 + 0  /  2 = 2.5

y = (y1 + y2) / 2 = (-6 + 10) / 2 = 2

 Таким образом, M(2.5;2)

Теперь, зная координаты точки B и координаты точки M по формуле найдём длину отрезка BM:

|BM| = √(x-x₀)²+(y-y₀)², где x,y - абсцисса и ордината конца отрезка, x₀,y₀ - абсцисса и ордината начала отрезка. Подставим и вычислим:

|BM| = √(2.5+3)²+(2 - 4)² = √(30.25 + 4) = √34.25 (советую проверить потом, верно ли я везде посчитал, так как в спешке всё делаю, но сама суть думаю, ясна).

 Теперь нужно найти уравнение медианы: искать будем его в общем виде y = kx + b(нужно найти k и b). Учитывая тот факт, что раз прямая проходит через точки B и M, её координаты должны удовлетворять формуле. Подставим координаты обоих точек в общее уравнение и составим и решим систему:

 

4 = -3k + b             3k - b = -4        5.5k = -2           k = -2/5.5

2 = 2.5k + b           2.5k + b = 2      3k - b = 4         b = 3k - 4 = -6/5.5 - 4 (ну вот, где-то точно в вычислениях ошибся)

b = -28/5.5(так вроде посчитал).

Теперь подставим k и b в общий вид, и получим то, что хотели, то есть уравнение медианы:

y = -2/5.5 k - 28/5.5 (коэффициенты получились не самые хорошие, это может быть связано как с вычислительной ошибкой, так и с самим условием, хотя всё проверял, по идее всё верно подсчитано должно быть)

 

2)Длину высоты CH найти ещё проще. Совместим точку H с началом координат. Тогда получим, что координаты точки H(0;0), а точки C(0;10). Найдём длину отрезка CH:его длина равна 10(можно по предыдущей формуле, а можно догадаться, что разница между координатами этих точек равна 10)

Похожие вопросы
Предмет: Физика, автор: sizmatvej
Предмет: Алгебра, автор: enderrg14092