Предмет: Алгебра,
автор: Danko46
100 БАЛЛОВ!!!!!!Доказать,что при любом натуральном значении n значение выражения 5^n 3^2n-2^3n кратно 37....С помощью индукции...только третью часть,когда n=k+1..
Ответы
Автор ответа:
2
5^n 3^2n-2^3n
1) при n=1
5^n 3^2n-2^3n=5* 9-8=45-8=37 - делится на 37
2) допустим делится на 37 при n=k
5^n 3^2n-2^3n=5^k* 3^2k-2^3k=37*A - делится на 37
значит 2^3k=5^k* 3^2k-37*A
3) проверим делится ли на 37 при n=k+1
5^n 3^2n-2^3n=
=5^(k+1)* 3^(2(k+1))-2^(3(k+1))=
=5*9*5^(k)* 3^(2k)-8*2^(3k)=
=45*5^(k)* 3^(2k)-8*(5^k* 3^2k-37*A)=
=37*5^(k)* 3^(2k)+8*37*A=
=37*(5^(k)* 3^(2k)+8*A) - делится на 37 - доказано
1) при n=1
5^n 3^2n-2^3n=5* 9-8=45-8=37 - делится на 37
2) допустим делится на 37 при n=k
5^n 3^2n-2^3n=5^k* 3^2k-2^3k=37*A - делится на 37
значит 2^3k=5^k* 3^2k-37*A
3) проверим делится ли на 37 при n=k+1
5^n 3^2n-2^3n=
=5^(k+1)* 3^(2(k+1))-2^(3(k+1))=
=5*9*5^(k)* 3^(2k)-8*2^(3k)=
=45*5^(k)* 3^(2k)-8*(5^k* 3^2k-37*A)=
=37*5^(k)* 3^(2k)+8*37*A=
=37*(5^(k)* 3^(2k)+8*A) - делится на 37 - доказано
IUV:
внимание, ответ изменен - обновите страницу
число, делящееся на 37 я могу представить в виде 37*A
напишите Z
Похожие вопросы
Предмет: Математика,
автор: emillgirfanov
Предмет: Математика,
автор: котик937
Предмет: Окружающий мир,
автор: ирт3
Предмет: Математика,
автор: Lazzatberikkyzy
Предмет: Алгебра,
автор: RicardoVincero