Предмет: Геометрия, автор: masha9715

Площадь сечения куба ABCDA₁B₁C₁D₁ плоскостью ABC₁ равна 25\sqrt{2} см². найдите:
Площадь сечения куба плоскостью ACD₁ .

Ответы

Автор ответа: dnepr1
2
Обозначим ребро куба за а.
Площадь сечения  S АВС₁ = а*(а√2) = а²√2.
Приравняем по заданию S = 25√2 = a²√2
 a² = 25     a = √25 = 5 см.
Рассмотрим сечение АСД₁ - это равносторонний треугольник со сторонами, равными диагоналям куба.
Его площадь равна  в²√3 / 4, где в - сторона, равная 5√2.
Площадь сечения куба плоскостью ACD₁ равна S = (5√2)² *√3 / 4 = 
= 50√3 / 4 =25√3 / 2.
Похожие вопросы
Предмет: Другие предметы, автор: sanjarcom