Предмет: Геометрия,
автор: stake1
Написать каноническое уравнение эллипса, если его малая полуось равна 5, а
эксцентриситет равен 12/13
Ответы
Автор ответа:
11
Большая полуось определяется из выражения:
.
а = 5 / √(1-(12/13)²) = 5 / √(1-144/169) = 5 / √(25/169) =
=5 / (5/13) = 13.
Тогда каноническое уравнение эллипса:
(х² / 13²) + (у² / 5²) = 1 или:
(х² / 169) + (у² / 25) = 1.
.
а = 5 / √(1-(12/13)²) = 5 / √(1-144/169) = 5 / √(25/169) =
=5 / (5/13) = 13.
Тогда каноническое уравнение эллипса:
(х² / 13²) + (у² / 5²) = 1 или:
(х² / 169) + (у² / 25) = 1.
stake1:
и это все, ну то есть все решение ?
Похожие вопросы
Предмет: Русский язык,
автор: Геморойна
Предмет: Биология,
автор: EnotPu4iglaz
Предмет: Английский язык,
автор: hggbvdd
Предмет: Геометрия,
автор: valeria0659
Предмет: География,
автор: Alisa666333222