Предмет: Алгебра,
автор: m1greatcool
Докажите, что делится на 3 с остатком 1, если k - четное, и с остатком два, если не четное.
Ответы
Автор ответа:
1
рассмотрим случай четных k
доказательство методом математической индукции
(База индукции)
:
25 при делении на 3 дает остаток 1 (25=8*3+1)
Выполняется
Гипотеза индукции
пусть при k=n утверждение верно, т.е. справедливо утверждение
при четном n при делении на 3 дает остаток 1
Индукционный переход. n+2 - следующее последовательное четное число после числа n
Докажем что тогда дает остаток 1
Так как
при делении на 3 дает остаток 1 (согласно нашей гипотезе)
25 при делении на 3 дает остаток 1 (убедились выше)
Поэтому по правилу деления произведения на число остаток будет равен остатку от деления произведения остатков множителей
так как 1*1=1, а 1 при делении на 3 дает остаток 1
то и число даст остаток 1
По принципу математической индукции доказано
Аналогично для нечетных доказывается для нечетных
[кратко 5 при делении на 3 дает остаток 2)
(5^{n}*5^2)
5^n - остаток 2
25 - остаток 1
2*1=2 , 2 при делении на 3 остаток 2]
доказательство методом математической индукции
(База индукции)
:
25 при делении на 3 дает остаток 1 (25=8*3+1)
Выполняется
Гипотеза индукции
пусть при k=n утверждение верно, т.е. справедливо утверждение
при четном n при делении на 3 дает остаток 1
Индукционный переход. n+2 - следующее последовательное четное число после числа n
Докажем что тогда дает остаток 1
Так как
при делении на 3 дает остаток 1 (согласно нашей гипотезе)
25 при делении на 3 дает остаток 1 (убедились выше)
Поэтому по правилу деления произведения на число остаток будет равен остатку от деления произведения остатков множителей
так как 1*1=1, а 1 при делении на 3 дает остаток 1
то и число даст остаток 1
По принципу математической индукции доказано
Аналогично для нечетных доказывается для нечетных
[кратко 5 при делении на 3 дает остаток 2)
(5^{n}*5^2)
5^n - остаток 2
25 - остаток 1
2*1=2 , 2 при делении на 3 остаток 2]
m1greatcool:
Слушай а через классы чисел типа 3n+1 и 3n+2 тоже же можно? Просто сейчас в голову пришло. А индукцией я что-то не додумался.
Похожие вопросы
Предмет: Английский язык,
автор: Tadashimi2016
Предмет: Английский язык,
автор: gazetacapitan
Предмет: Математика,
автор: сайкал1
Предмет: Математика,
автор: Bullyfisic
Предмет: История,
автор: vika77788889999