Предмет: Математика, автор: kristinabauer15

Докажите, что при вращение правильного шестиугольника вокруг его центра на 120 градусов он отображен сам на себя

Ответы

Автор ответа: Аноним
11
Пусть ABCDEF - правильный 6-угольник с центром О.
Точка О является центром описанной возле 6-угольника окружности. Отрезки AO, BO, CO, DO, EO, FO - радиусы этой окружности. Соседние отрезки (AO и BO, BO и CO и т.д.) образуют угол 360:6 = 60 градусов.
При повороте 6-угольника вокруг точки О на 120 градусов по часовой стрелке вершина А перейдёт в вершину C, Вершина В в вершину D, вершина C в вершину E, вершина D в вершину F, вершина Е в вершину А, вершина F в вершину B.
Другими словами все его вершины совпадут с прежним положением вершин, а значит, 6-угольник отобразится сам на себя.
Похожие вопросы