Предмет: Математика,
автор: 11katya12
диагональ равнобокой трапеции перпендикулярна боковой стороне и образует с основанием трапеции угол а.Найдите высоту трапеции,если радиус
окружности,описанной около трапеции,равен h
11katya12:
Срочнооо
Ответы
Автор ответа:
15
Диагональ равнобокой трапеции перпендикулярна боковой стороне и образует с основанием трапеции угол α. Найдите высоту трапеции, если радиус окружности, описанной около трапеции, равен h.
=============================================================
Первый способ:
Около равнобедренной трапеции всегда можно описать окружность. С учётом условия (∠АСD = 90°) получаем, что АD - диаметр описанной окружности. AD = 2h.
Если вписанный в окружность угол прямой, то он опирается на диаметр этой окружности.
Продолжим высоту СН трапеции до пересечения с описанной окружностью в точке Е. Диаметр окружности является серединным перпендикуляром по отношению к хорде СЕ ⇒ СН = НЕ, AD⊥CE ⇒ ΔACE - равнобедренный, АС = АЕ, ∠CAD = ∠EAD = α, ∠САЕ = 2α. Или можно ссылаться на симметрию относительно AD.
По теореме синусов: R = h = CE/2•sin2α = 2•CH/2•sin2α = CH/sin2α ⇒ CH = h•sin2α
Второй способ:
В ΔACD: cosα = AC/AD ⇒ AC = AD•cosα = 2h•cosα
В ΔАСН: sinα = CH/AC ⇒ CH = AC•sinα
Значит, СН = (2h•cosα) •sinα = h•sin2α
ОТВЕТ: h•sin2α
Приложения:
Похожие вопросы
Предмет: Русский язык,
автор: ngagarina2010
Предмет: Русский язык,
автор: NastiaGO19
Предмет: Русский язык,
автор: afetmeryem
Предмет: Математика,
автор: LizkaBest909
Предмет: Алгебра,
автор: yxhu26