Предмет: Алгебра, автор: Аноним

Решите,ПОЖАААЛУЙСТА,не хватает времени сделать эти 3 номерa!

№1

разложить на множители:

1)ас⁴-с⁴-ас²+с²=

2)х³у-ху-х³+х=

№2

сократить дробь:

1)3х²-7х+2/2-6х=

2)5х²-12х+4/6-15х=

№3

упростить выр-ние:

1) (2m/2m+n    -   4m²/4m²+4mn+n²) : ( 2m/4m²-n²  +  1/n-2m) =

2)( x²/x+y  -  x³/x²+y²+2xy ):(x/x+y  +  x²/y²-x²)=

 

 

Ответы

Автор ответа: dtnth
0

ac^4-c^4-ac^2+c^2=\ (ac^4-c^4)-(ac^2-c^2)=\ c^4(a-1)-c^2(a-1)=\ (c^4-c^2)(a-1)=\ c^2(c^2-1)(a-1)=\ c^2(c-1)(c+1)(a-1)

 

x^3y-xy-x^3+x=\ (x^3y-xy)-(x^3-x)=\ y(x^3-x)-(x^3-x)=\ (y-1)(x^3-x)=\ (y-1)x(x^2-1)=\ (y-1)x(x-1)(x+1)

 

frac{3x^2-7x+2}{2-6x}=\ frac{3x^2-6x-x+2}{2(1-3x)}=\ frac{-3x(2-x)+1(2-x)}{2(1-3x)}=\ frac{-3x(2-x)+1(2-x)}{2(1-3x)}=\ frac{(1-3x)(2-x)}{2(1-3x)}=\ frac{2-x}{2}

 

frac{5x^2-12x+4}{6-15x}=\ frac{5x^2-2x-10x+4}{3(2-5x)}=\ frac{-x(2-5x)+2(2-5x)}{3(2-5x)}=\ frac{(2-x)(2-5x)}{3(2-5x)}=\ frac{2-x}{3}

 

(frac{2m}{2m+n}-frac{4m^2}{4m^2+4mn+n^2}:(frac{2m}{4m^2-n^2}+frac{1}{n-2m})=\ (frac{2m}{2m+n}-frac{4m^2}{(2m+n)^2}:(frac{2m}{(2m-n)(2m+n)}-frac{1}{2m-n})=\ (frac{2m(2m+n)}{(2m+n)^2}-frac{4m^2}{(2m+n)^2}:(frac{2m}{(2m-n)(2m+n)}-frac{1*(2m+n)}{(2m-n)(2m+n)})=\ (frac{4m^2+2mn}{(2m+n)^2}-frac{4m^2}{(2m+n)^2}:(frac{2m}{(2m-n)(2m+n)}-frac{2m+n}{(2m-n)(2m+n)})

frac{4m^2+2mn-4m^2}{(2m+n)^2}:frac{2m-2m-n}{(2m-n)(2m+n)}=\ frac{2mn}{(2m+n)^2}:frac{-n}{(2m-n)(2m+n)}=\ frac{2mn}{(2m+n)^2}*frac{(2m-n)(2m+n)}{-n}=\ frac{2mn(2m-n)(2m+n)}{(2m+n)^2(-n)}=\ frac{2m(n-2m)}{(2m+n)}=\

 

(frac{x^2}{x+y}-frac{x^3}{x^2+y^2+2xy}):(frac{x}{x+y}+frac{x^2}{y^2-x^2})=\

(frac{x^2}{x+y}-frac{x^3}{(x+y)^2}):(frac{x}{x+y}-frac{x^2}{(x-y)(x+y)})=\ (frac{x^2(x+y)}{(x+y)^2}-frac{x^3}{(x+y)^2}):(frac{x(x-y)}{(x+y)(x-y)}-frac{x^2}{(x-y)(x+y)})=\ frac{x^2(x+y)-x^3}{(x+y)^2}:frac{x(x-y)-x^2}{(x-y)(x+y)}=\ frac{x^3+xy-x^3}{(x+y)^2}:frac{x^2-xy-x^2}{(x-y)(x+y)}=\ frac{xy}{(x+y)^2}:frac{-xy}{(x-y)(x+y)}=\ frac{xy}{(x+y)^2}*frac{(x-y)(x+y)}{-xy}=\ frac{xy(x-y)(x+y)}{-xy(x+y)^2}=\ frac{y-x}{y+x}

Автор ответа: Tusla
0

№1

 c^2[(ac^2-a)-(c^2-1)]=c^2[a(c^2-1)-(c^2-1)]=c^2(c^2-1)(a-1)=c^2(c-1)(c+1)(a-1)

 

x(x^2y-y-x^2+1) =x[y(x^2-1)-(x^2-1)]=x(x-1)(x+1)(y-1)

 

№2

Разложим числитель на множители: (x-2)(3*x-1)

(x-2)(3*x-1)/2(1-3*x)=-(x-2)(1-3*x)/2(1-3*x)=(2-x)/2

 

(x-2)(5x-2)/(3(2-5x)=-(x-2)(2-5x)/(3(2-5x)=(2-x)/3

 

№3

Упростим сначала числитель:

(8m^3+8m^2n+2mn^2-8m^3-4m^2n)/(8m^3+2m^2n+2mn^2+4m^2n+mn^2+n^3)=

=(2mn(2m+n))/(2m+n)^3=2mn/(2m+n)^2

Теперь знаменатель:

(2mn^2-4m^2+4m^2-n^2)/(4m^2n-8m^3-n^3+2mn^2)=-n(2m-n)/(2m-n)^3=

=-n/(2m-n)^2

Соединяем:

-(2nm(2m-n)^2)/((2m+n)^2)*n)=-(2m(2m-n)^2/(2m+n)^2

 

Числитель: 

x^2/(x+y)-x^3/(x+y)^2=(x^3+x^2y-x^3)/(x+y)^2=x^2y/(x+y)^2

Знаменатель:

x/(x+y)+x^2/(y+x)(y-x)=(xy-x^2+x^2)/(y+x)(y-x)=xy/((y+x)(y-x))

Собираем:x^2y*(y+x)(y-x)/((x+y)^2*xy)=x(y-x)/(x+y)

 

 

Похожие вопросы
Предмет: Психология, автор: vikusya1560
Предмет: Обществознание, автор: 1larayudina1
Предмет: Математика, автор: 23022001