Предмет: Математика, автор: Andsit74

Найти площадь фигуры, ограниченной линиями: y=2/x, y=x/2, y=4.
Ответ вычислить при условии, что: ln2≈0,7; ln3≈1,1; ln5≈1,6.

Ответы

Автор ответа: dnepr1
0
Находим точки пересечения линий:
- точка 1 : 2/х = 4   4х = 2   х = 0,5    у = 2 / 0,5 = 4,
- точка 2: 2/х = х / 2  х² = 4    х = √4 = +-2 . Значение -2 отбрасываем (не входит в заданные пределы),
- точка 3: х/2 = 4  х = 8     у = 8/2 = 4.
Между точками 1 и 2 площадь находим интегрированием.
Эта площадь равна 3,22741 (смотри приложение - 2 задача).
 Между 2 и 3 - это обычный треугольник. Его площадь равна S = (1/2)*(8-2)*(4-1) = 9.
Общая площадь равна 3,22741 + 9 = 12,22741.
Приложения:
Похожие вопросы
Предмет: Русский язык, автор: TakumiHardy