Предмет: Геометрия,
автор: xediceagazade
Помогите решить эту задачу
Условие такое: дана трапеция и в неё вписана окружность. Надо найти расстояние между точками касания боковых сторон если основания раны 6 и 14
с решением!!!!
Ответы
Автор ответа:
0
В четырехугольник, значит, и в трапецию, вписать окружность можно тогда и только тогда, когда суммы ее противоположных сторон равны.
Следовательно,
АВ+СD=AD+BC=20
В комментарии к условию указано, что трапеция равнобедренная. Следовательно.
АВ=СD=20:2=10
Соединим точки касания окружности М и Н.
Опустим из В и С перпендикуляры ВК и СР.
КР=ВС=ТЕ=6
АК=(АD-DC):2=(14-6):2=4
По свойству отрезков касательной из одной точки
ВМ=ВО=ОС=СН=3
Тогда АМ=НD=10-3=7
Рассмотрим треугольники АВК и ВМТ.
Они подобны, т.к. МН параллельна АD⇒.
МТ:АК=ВМ:ВА
МТ:4=3:10
10 МТ=12
МТ=1,2
ЕН=МТ
МН=МТ+ТЕ+ЕН=8,6
Следовательно,
АВ+СD=AD+BC=20
В комментарии к условию указано, что трапеция равнобедренная. Следовательно.
АВ=СD=20:2=10
Соединим точки касания окружности М и Н.
Опустим из В и С перпендикуляры ВК и СР.
КР=ВС=ТЕ=6
АК=(АD-DC):2=(14-6):2=4
По свойству отрезков касательной из одной точки
ВМ=ВО=ОС=СН=3
Тогда АМ=НD=10-3=7
Рассмотрим треугольники АВК и ВМТ.
Они подобны, т.к. МН параллельна АD⇒.
МТ:АК=ВМ:ВА
МТ:4=3:10
10 МТ=12
МТ=1,2
ЕН=МТ
МН=МТ+ТЕ+ЕН=8,6
Приложения:
Автор ответа:
0
Spasibo za obyasnenie! Realno pomoqli)
Похожие вопросы
Предмет: Геометрия,
автор: bemil1985pcsnq8
Предмет: История,
автор: olesaostapenko
Предмет: Информатика,
автор: elin0k
Предмет: Математика,
автор: marial2012