Предмет: Геометрия,
автор: dashabbbb
Если из вершины равнобедренного треугольника провести биссектрису, то она совпадёт с её медианой-это легко доказать по признаку равенства треугольников. Попробуйте найти док-во данного утверждения , не используя признак равенства.
Ответы
Автор ответа:
0
Рассмотри рб треугольник АВС, у которого АВ = ВС, отрезок ВL - его биссектриса.
В треугольнике ABL, CBL сторона ВL - общая, угол ABL = углу CBL, т.к. по условию BL - биссектриса угла АВС, стороны АВ и ВС равны как боковые стороны равнобедр треугольника. Следовательно, треугольник ABL = треугольнику CBL по 1 признаку равенства треугольников. отсюда можно сделать выводы, что : угол А = углу С; AL = LC ; угол ALB равен углу CLB.
т. к. отрезки AL, LC равны, То BL - медиана треугольника АВС.
Углы ALB, CLB смежные, следовательно, угол ALB + угол CLB = 180 градусов. Учитывая, что угол ALB = угол CLB = 90. Значит, отрезок BL - высота треугольника АВС.
В треугольнике ABL, CBL сторона ВL - общая, угол ABL = углу CBL, т.к. по условию BL - биссектриса угла АВС, стороны АВ и ВС равны как боковые стороны равнобедр треугольника. Следовательно, треугольник ABL = треугольнику CBL по 1 признаку равенства треугольников. отсюда можно сделать выводы, что : угол А = углу С; AL = LC ; угол ALB равен углу CLB.
т. к. отрезки AL, LC равны, То BL - медиана треугольника АВС.
Углы ALB, CLB смежные, следовательно, угол ALB + угол CLB = 180 градусов. Учитывая, что угол ALB = угол CLB = 90. Значит, отрезок BL - высота треугольника АВС.
Похожие вопросы
Предмет: Английский язык,
автор: navris
Предмет: Қазақ тiлi,
автор: Kaifus
Предмет: Алгебра,
автор: polinapriymak228
Предмет: Математика,
автор: Cleo2000x
Предмет: История,
автор: Аноним