Доказать, что если натуральное число при делении на 4 дает в остатке 2, то это число четное. У к а з а н и е. Рассматриваемое число представить в виде 4n+2, где n- частное от деления этого числа на 4.
Натуральное число а при делении на 3 дает в остатке 1, а натуральное число b при делении на 3 дает в остатке 2. Доказать, что сумма чисел a и b кратка трем.
Доказать, что сумма двух последовательных четных степеней числа 3 оканчивается нулем. Доказать, что это же справедливо и для суммы двух последовательных нечетных степеней числа 3.
Ответы
1) Как нам подсказали, рассмотрим все числа 4n+2. Но 4n+2=2(2n+1), значит такие числа делятся на 2
2)Из условия следует что a=3n+1, а b=3k+2. Их сумма=3n+1+3k+2=3n+3k+3=3(n+k+1), значит их сумма кратна 3
3)все четные числа представляются в виде 2n. Нам нужно доказать что оканчивается на 0, то есть делится на 10.
Но
4)все нечетные числа представляются в виде 2n+1. Нам нужно доказать что оканчивается на 0, то есть делится на 10.
Но