Предмет: Геометрия, автор: Ephemeral

Равнобокая трапеция описана около окружности с радиусом 12 дм , точка касания делит ее боковую сторону в соотношении 9:4. Найдите среднюю линию трапеции

Ответы

Автор ответа: жихарев
0
r= sqrt{ab} по свойству вписанной окр в трапецию т,е 12= sqrt{36x} т,е 144=36x опять же: x= frac{144}{36} =4, а значит вся сторона = 8+18 = 26 
Окр можно вписать в трапецию тогда и только тогда, когда сумма сторон
( боковых ) = сумме оснований т,е 26+26=52 ( AD+BC ) и это равно сумме оснований т,е 52 = AB+DC, 52=52
Средняя линия = полусумме оснований т,е  frac{52}{2} = 26
( ср линия ) 
Приложения:
Похожие вопросы
Предмет: Биология, автор: ali209920
Предмет: Математика, автор: asd1967