Предмет: Алгебра,
автор: iljamakarov199
среднее арифметическое трех чисел,составляющих арифметическую прогрессию равна 2,6.Найдите разность этой прогрессии,если ревое число равно 2,4
Ответы
Автор ответа:
0
Решение:
Средне арифметическое трёх чисел арифметической прогрессии есть сумма трёх членов прогрессии, делённое на 3, следовательно:
S3/3=2,6
S3=(a1+a3)*3/2
a3=a1+d(3-1)=a1+2d Подставим в выражение S3/3=2,6 известные данные:
(2,4+2,4+2d)*3/2 :3 =2,6
(4,8+2d)/2=2,6
4,8+2d=5,2
2d=5,2-4,8
2d=0,4
d=0,4/2=0,2- разность прогрессии
Проверим это:
а1=2,4
а2=2,4+0,2=2,6
а3=2,6+0,2=2,8
Средне-арифметическое трёх чисел прогрессии равно:
(2,4+2,6+2,8) : 3=7,8 :3=2,6-что и следовало из условия задачи
Ответ: d=0,2
Средне арифметическое трёх чисел арифметической прогрессии есть сумма трёх членов прогрессии, делённое на 3, следовательно:
S3/3=2,6
S3=(a1+a3)*3/2
a3=a1+d(3-1)=a1+2d Подставим в выражение S3/3=2,6 известные данные:
(2,4+2,4+2d)*3/2 :3 =2,6
(4,8+2d)/2=2,6
4,8+2d=5,2
2d=5,2-4,8
2d=0,4
d=0,4/2=0,2- разность прогрессии
Проверим это:
а1=2,4
а2=2,4+0,2=2,6
а3=2,6+0,2=2,8
Средне-арифметическое трёх чисел прогрессии равно:
(2,4+2,6+2,8) : 3=7,8 :3=2,6-что и следовало из условия задачи
Ответ: d=0,2
Похожие вопросы
Предмет: Математика,
автор: kakahi30
Предмет: Русский язык,
автор: merkulovmaksim760
Предмет: Химия,
автор: AXCACAA
Предмет: Математика,
автор: madina110286
Предмет: Обществознание,
автор: ashcom