Предмет: Алгебра, автор: Mary230999

Dokazhite s pomoshii mat.indukcii , chto symma Sn pervix n-chlenov posledovatelnosti
 frac{1}{7} ,  frac{1}{ 7^{2} } , frac{1}{ 7^{3} } ,..., frac{1}{ 7^{n} } ,..
mozhet bit vicheslena po formyle Sn =   frac{7^{n}-1 }{6* 7^{n} }

Ответы

Автор ответа: mefody66
0
При n = 1 будет S(1) = (7^1 - 1)/(6*7^1) = 6/(6*7) = 1/7
То есть для n = 1 формула подходит. Пусть она подходит для какого-то n.
Докажем, что она подходит для n+1.
S(n+1) = 1/7 + 1/7^2 + 1/7^3 + ... + 1/7^n + 1/7^(n+1) = S(n) + 1/7^(n+1) =
= (7^n - 1)/(6*7^n) + 1/7^(n+1) = (7*(7^n - 1) + 6)/(6*7^(n+1)) =
= (7^(n+1) - 1)/(6*7^(n+1))
Что и требовалось доказать
Похожие вопросы
Предмет: Информатика, автор: Аноним