Предмет: Геометрия,
автор: танюшка150399
Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF если AD=35 BC=21. CF:DF=5:2
Ответы
Автор ответа:
0
Сделаем рисунок.
Соединим А и С.
Точку пересечения АC и ЕF отметим О.
Треугольники АСD и OCF подобны по первому признаку подобия, т.к. углы при секущей СD и параллельных ЕF равны как соответственные.
Пусть коэффициент отношения отрезков СD и FD равен х.
Тогда СD=7х
АD:ОF=7:5
35:ОF=7:57=25
Аналогично углы при параллельных АD и ЕF и секущей АС равны.
Из подобия треугольников АВС и АЕО
ВС:ЕО=7:2
ЕО=6
ЕF=EO+OF=25+6=31
Соединим А и С.
Точку пересечения АC и ЕF отметим О.
Треугольники АСD и OCF подобны по первому признаку подобия, т.к. углы при секущей СD и параллельных ЕF равны как соответственные.
Пусть коэффициент отношения отрезков СD и FD равен х.
Тогда СD=7х
АD:ОF=7:5
35:ОF=7:57=25
Аналогично углы при параллельных АD и ЕF и секущей АС равны.
Из подобия треугольников АВС и АЕО
ВС:ЕО=7:2
ЕО=6
ЕF=EO+OF=25+6=31
Приложения:
Похожие вопросы
Предмет: Русский язык,
автор: informat5e
Предмет: Биология,
автор: ajgeryym
Предмет: Русский язык,
автор: zuhraaytbayeva1983
Предмет: Литература,
автор: 220602
Предмет: Математика,
автор: ангелина200228