Предмет: Геометрия, автор: dima28

помогите решить задачу:

В треугольнике АВС угол С прямой, а угол А=30 градусов. Через точку С проведена прямая СМ, перпендикулярная плоскости треугольника, АС=18 см, СМ=12см. Найтите расстояние от точки М до прямой АВ и расстояние от точки В до плоскости АСМ.

Ответы

Автор ответа: Hrisula
0

Используется:
1)Теорема Пифагора
2) Значение катета, противолежащего углу 30 градусов.
Рассмотрим рисунок.
В нем высота СН треугольника АСВ равна половине АС, как катет, противолежащий углу 30 градусов, и
СН=9 см
МН - расстояние от М до АВ, измеряется отрезком, перпендикулярным к АВ.
Угол МСН прямоугольный по условию ( МС⊥ плоскости АСВ)
Треугольник МСН - прямоугольный.
По теореме Пифагора находим МН.
МН=√(12²+9²)=15 см- расстояние от М до АВ
Расстояние от точки В до плоскости АСМ равно длине СВ, т.к. СВ⊥АС.
Так как угол при вершине С в треугольнике НСВ равен 30 градусов ( угол В =60), то СВ=2НВ
3НВ²=СН²= 81
НВ =√27=3√3
СВ=2НВ=6√3 - расстояние от В до плоскости АСМ

Приложения:
Похожие вопросы
Предмет: Қазақ тiлi, автор: folts34anna
Предмет: Физика, автор: suunsoffi171
Предмет: Русский язык, автор: cybulinavioletta