Предмет: Алгебра,
автор: Xvr
розвяжить графічно систему рівняня
{ 4-x^2-y=0 ниже
х+у=0 }
второй пример {y+2x+x^2=0
у-х=-10
Ответы
Автор ответа:
0
1) Первое уравнение параболы.
Если коэффициент перед х² отрицателен, то ветви её идут вниз.
Для построения надо задаться значениями х и по формуле высчитать значения у. По этим данным строится кривая.
Второе уравнение - прямая у = -х. Она пересекает параболу в двух точках: х₁ = 2,56 х₂ = -1,56.
Вот данные для параболы:
х -3 -2 -1 0 1 2 3 4
у=-x^2+4 -5 0 3 4 3 0 -5 -12
Точки пересечения можно определить аналитически, решив систему: у = -х²+4
у = -х
Если из второго уравнения вычесть первое, то получим квадратное уравнение х²-х-4=0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-1)^2-4*1*(-4)=1-4*(-4)=1-(-4*4)=1-(-16)=1+16=17;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√17-(-1))/(2*1)=(√17+1)/2=√17/2+1/2=√17/2+0.5≈2.56155281280883;
x_2=(-√17-(-1))/(2*1)=(-√17+1)/2=-√17/2+1/2=-√17/2+0.5≈-1.56155281280883.
2) Решается аналогично.
Если коэффициент перед х² отрицателен, то ветви её идут вниз.
Для построения надо задаться значениями х и по формуле высчитать значения у. По этим данным строится кривая.
Второе уравнение - прямая у = -х. Она пересекает параболу в двух точках: х₁ = 2,56 х₂ = -1,56.
Вот данные для параболы:
х -3 -2 -1 0 1 2 3 4
у=-x^2+4 -5 0 3 4 3 0 -5 -12
Точки пересечения можно определить аналитически, решив систему: у = -х²+4
у = -х
Если из второго уравнения вычесть первое, то получим квадратное уравнение х²-х-4=0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-1)^2-4*1*(-4)=1-4*(-4)=1-(-4*4)=1-(-16)=1+16=17;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√17-(-1))/(2*1)=(√17+1)/2=√17/2+1/2=√17/2+0.5≈2.56155281280883;
x_2=(-√17-(-1))/(2*1)=(-√17+1)/2=-√17/2+1/2=-√17/2+0.5≈-1.56155281280883.
2) Решается аналогично.
Автор ответа:
0
обращайтесь по юридическим вопросом
Похожие вопросы
Предмет: Алгебра,
автор: torotadze19
Предмет: Другие предметы,
автор: olesatan85804
Предмет: География,
автор: Аноним
Предмет: Математика,
автор: vorobeva1978
Предмет: Математика,
автор: ed0704